If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-256x+2304=0
a = 1; b = -256; c = +2304;
Δ = b2-4ac
Δ = -2562-4·1·2304
Δ = 56320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{56320}=\sqrt{1024*55}=\sqrt{1024}*\sqrt{55}=32\sqrt{55}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-256)-32\sqrt{55}}{2*1}=\frac{256-32\sqrt{55}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-256)+32\sqrt{55}}{2*1}=\frac{256+32\sqrt{55}}{2} $
| (21.75)(23.34)=7x+5(x+4))+6x+10(x+7)/15(x+7)+123.5 | | 11/3+v/2=22/1 | | 5x+3(x+2)-4=2 | | (2x-6)/4=10 | | (4-4x)(8x+7)=0 | | 12+-9z=-69 | | -3x-18=-12 | | 12x2+107x−37=0 | | 5s–4s+4s–5s+3s=12 | | 1=-9x+1+7x | | 4s-90=626 | | 2d+20=6d-10 | | 16x^2+100x+5=0 | | 6x+2(2x+2)=28+6x | | x6-1=0 | | 3m-6=11.4 | | 5x-(x/5)+(x+1/3)=3x | | 8.2+1.4x=12.4 | | -5(k+4)-1=3(k+1) | | 11.4=3m-6 | | |y|+5=9 | | 1/4x-5=3/4-12 | | 1/x=3/3x-5 | | 3(2x^2-x+7)-(-x^2-3x+5)=0 | | -7(r-5)=39-5r | | 5u/9=-25 | | 49=5-4v | | 22p-(-71)=907 | | 2a-6+5a=10 | | 5a-9-6a-15+7a=2-a-2a+12-3a | | 40-2x=-14 | | 1/2y-5=-9 |